
Online Flow Computation on Unit-Vertex-Capacitated Networks∗

Makis Arsenis† Robert Kleinberg†

Abstract
In many networking scenarios, long-lived flows can be
rerouted to free up resources and accommodate new flows,
but doing so comes at a cost in terms of disruption. An
archetypical example is the transmission of live streams
in a content delivery network: audio and video encoders
(clients) generate live streams and connect to a server
which rebroadcasts their stream to the rest of the network.
Reconnecting a client to a different server mid-stream is
very disruptive. We abstract these scenarios in the setting
of a capacitated network where clients arrive one by one
and request to send a unit of flow to a designated set of
servers subject to edge/vertex capacity constraints. An online
algorithm maintains a sequence of flows that route the clients
present so far to the set of servers. The cost of a sequence
of flows is defined as the net switching cost, i.e. total length
of all augmenting paths used to transform each flow into
its successor. We prove that for unit-vertex-capacitated
networks, the algorithm that successively updates the flow
using the shortest augmenting path from the new client to
a free server incurs a total switching cost of O(n log2 n),
where n is the number of vertices in the network. This result
is obtained by reducing to the online bipartite matching
problem studied in prior work and applying their result.
Finally, we identify a slightly more general class of networks
for which essentially the same reduction idea can be applied
to get the same bound.

1 Introduction
In routing, there is a fundamental tension between
efficiency and stability: to utilize network resources as
efficiently as possible in the face of changing conditions,
it sometimes becomes necessary to change the routing
paths used to send traffic between certain sources and
destinations. For example, admitting new flows into a
capacitated network may require rerouting existing flows
to free up bandwidth.

A simple scenario in which this tension arises is the
transmission of live streaming media in a content delivery
network (CDN) [1]. When an audio or video encoder
generates a new stream to be broadcast into the network,
the first step is to connect the encoder to a server which
receives the encoder’s stream and retransmits it to one
or more other hosts in the network. To do so while
respecting bandwidth and server-capacity constraints,
it may be necessary to disconnect other encoders
from the selected server and reconnect them elsewhere,

∗Both authors were supported by NSF grants CCF-1512964
and CCF-1637532.
†Department of Computer Science, Cornell University, Ithaca,

NY, USA.

leading to undesirable disruptions in those other streams.
Thus, the challenge of admitting as many streams as
possible into the network while minimizing disruption to
existing streams entails solving an interesting algorithmic
challenge.

This example is emblematic of a broader category
of algorithmic problems involving dynamic routing
decisions in a network whose traffic demands, topology,
or both are evolving over time, when the objective is
to minimize “churn” — the costly process of shifting
traffic from one routing path to another. The theme has
become prominent in the design and analysis of wide-
area traffic engineering schemes, such as Google’s B4 [2]
or Microsoft’s SWAN [3]. In these systems a centralized
software-defined networking controller uses a solver to
periodically recompute an optimal multicommodity flow
as the traffic matrix (the matrix specifying the amount
of flow for each source-destination pair) varies over time.
In the literature evaluating such systems, churn has been
identified as a quantity to be minimized [4, 5] and traffic
engineering frameworks such as SOL [6] and SMORE [7]
are explicitly designed to minimize churn.

Despite this emphasis on churn minimization in the
recent literature on traffic engineering, there is a lack of
theoretical work analyzing worst-case bounds for churn
when solving a sequence of flow problems. The only
special case that has previously been studied is the case
when each routing path consists of a single edge of a
bipartite graph whose nodes all have capacity 1. If one
side of the graph consists of static vertices (“servers”) that
are always present, and the other side consists of dynamic
vertices (“clients”) that arrive over time, each seeking to
transmit one unit of flow to any server, then one obtains
the online bipartite matching problem. Churn, in this
setting, is quantified by the switching cost or replacement
cost studied in prior work on online bipartite matching
such as [8, 9, 10, 11, 12, 13].

In this paper we take the natural next step beyond
online bipartite matching by allowing for multi-hop
routes between sources and sinks, while retaining the
other key features of online bipartite matching: sinks
are always present in the network, sources arrive over
time and seek to send a unit of flow which persists
permanently after their arrival, and this unit of flow may
be routed to any sink. These features match essential

characteristics of the live streaming application presented
earlier, with sinks representing servers that are part
of the CDN’s infrastructure and sources representing
audio/video encoders that join the network over time
and transmit a stream continually after their arrival,
e.g. an Internet radio station.

We quantify the cost of a sequence of flows by
summing the lengths of the augmenting paths used
to modify each flow to its successor, a quantity that
we call the flow switching cost. This cost measure —
which matches (up to a factor-of-two rescaling) the
switching cost used in the analysis of online bipartite
matching — is motivated by two considerations. First,
shifting flow from one routing path to another imposes
overhead on the network: messages must be sent to each
node whose next-hop changes and those nodes must
change their internal state accordingly. The sum of
augmenting path lengths quantifies the total number of
such control messages and state changes. Second, in the
live streaming application it is particularly costly for a
source node (an audio/video encoder) to change its next
hop, as this may entail a disruption in the stream itself.
The number of such disruptions is bounded above by
the total number of nodes in the network that change
their next hop, and hence upper bounds on the sum of
augmenting path lengths imply upper bounds on the
number of such disruptions.

1.1 Our results and techniques The most natural
algorithm for online matching, and more generally
for online flow computation, is the greedy algorithm
that modifies the flow in each time step so as to
minimize the cost of switching from the preceding
flow. Specialized to online matching, this corresponds
to the Shortest Augmenting Path (SAP) algorithm
analyzed in [8, 10, 11, 13]. In this paper we analyze
the aforementioned greedy algorithm that generalizes
SAP. To distinguish between these two algorithms, we
henceforth refer to the greedy algorithm for online flow
computation as Network-SAP and its specialization to
online bipartite matching as Bipartite-SAP.

Our main result, Theorem 3.2, pertains to a special
case of online flow computation in which there is a
(directed or undirected) network consisting of static
vertices present at time zero, and dynamic vertices which
arrive one by one. Edges between static vertices are also
present at time zero, edges from a dynamic vertex to
a static vertex arrive at the same time as the arrival
of their dynamic endpoint, and edges between dynamic
vertices are assumed not to exist in our model. There is a
fixed set of static vertices known as sinks; each dynamic
vertex is a source that requests, upon arriving into the
network, to send one unit of flow which may be routed

to any sink. We prove a O(n log2 n) bound on the total
flow switching cost in the unit-capacitated case when all
vertices and edges have capacity 1, where n is the total
number of vertices in the network.

The main tool that enables us to obtain this bound
is a reduction from online flow computation in unit-
vertex-capacitated graphs to online bipartite matching.
Bernstein et al. [8] prove a O(nc log2 nc) bound for
the online bipartite matching, where nc is the number
of dynamic vertices (clients). This bound translates
into a similar bound (up to a constant factor) for flow
switching cost in our model. The reduction consists of
creating a sequence of auxiliary bipartite graphs and
matchings, one per time step, such that flow-augmenting
paths in the online flow computation problem are in
one-to-one correspondence with matching-augmenting
paths in the auxiliary graphs. This correspondence,
which preserves augmenting path length up to a factor-
of-two rescaling, implies that there is a one-to-one
correspondence between executions of the Network-
SAP algorithm for our problem and executions of the
Bipartite-SAP algorithm for the auxiliary problem. One
wrinkle that arises in the reduction is that in order for
the correspondence to hold at time zero, the auxiliary
bipartite graph sequence must be initialized with a non-
empty matching. We observe in Section 3 below that
the results of [8] continue to hold when one runs the
SAP algorithm on a bipartite graph initialized with a
non-empty matching.

This O(n log2 n) bound constitutes the first non-
trivial worst-case bound on flow switching cost for an
online flow computation algorithm in multi-hop networks.
As noted earlier, the flow switching cost is motivated
by at least two considerations. One can interpret it
as quantifying the message complexity of updating the
forwarding state in a software-defined network (SDN)
of switches governed by a centralized controller, or one
can interpret it as an upper bound on the number of
times that flow sources must disrupt their stream of
packets by changing the next-hop address to which they
are forwarding the stream. In the latter interpretation,
this “source switching cost” may be strictly less than the
flow switching cost (which counts changes of next-hop at
all nodes, not just source nodes) but a O(n log2 n) upper
bound on source switching cost is still quite non-trivial.
To see this, specialize to directed bipartite networks with
edges directly connecting sources to sinks, and observe
that it becomes equivalent to the best-known bound on
switching cost for the online bipartite matching problem.

We hope the results in this paper, which are
primarily inspired by the streaming media delivery
application, may prefigure future worst-case bounds on
flow switching cost (or other measures of churn) for

other important applications such as traffic engineering.
With an eye toward extending our result beyond unit-
vertex-capacitated networks, we devote Section 4 to
presenting a generalization to a class of bipartite directed
networks that includes the bipartite networks obtained
by applying the gadget reduction in Section 3 to unit-
vertex-capacitated networks. The generalization involves
introducing structures that we call semi-matchings which
generalize matchings, and showing that the O(nc log2 nc)
bound of Bernstein et al. [8] generalizes to executions
of the SAP algorithm initialized with a semi-matching
rather than a matching.

1.2 Related work Worst-case bounds for the switch-
ing cost of the SAP algorithm for online bipartite match-
ing were derived in many prior works [8, 10, 11, 13].
Obtaining a tight analysis for this algorithm in general
bipartite graphs is still an important open problem. Let-
ting nc denote the number of dynamic vertices (clients) in
the graph, it was shown in [13] that any algorithm must
incur a total switching cost of at least Ω(nc log nc) in
the worst case, even when the graph is a path. A match-
ing upper bound of O(nc log nc) is known for trees [11],
for bipartite graphs whose dynamic vertices have max-
imum degree 2 [13], and for general bipartite graphs
whose dynamic vertices arrive in random order [12]. For
general bipartite graphs the best known upper bound
is O(nc log2 nc), obtained in a breakthrough result by
Bernstein et al. [8]. It is an open question whether this
bound can be improved to O(nc log nc).

Reductions from flow problems to matching prob-
lems have appeared in prior works [14, 15] on offline
algorithms for maximum flow and maximum matching.
Our reduction, like Lin’s reduction [14], uses a simple
gadget that replaces each vertex with two vertices joined
by an edge and initializes a bipartite matching problem
with this set of “gadget edges”. Our analysis of this re-
duction in the online setting, which involves coupling the
executions of the online flow and matching algorithms
and proving a suitable invariant of the coupling which
ensures that augmenting paths remain in one-to-one cor-
respondence as nodes join the network, is novel to the
best of our knowledge.

Our work falls under the general framework known as
online algorithms with recourse (or replacement) bounds.
In this model one needs to maintain optimal (or near-
optimal) solutions at each step while keeping the total
number of changes needed to transform the solutions
from one step to the next as low as possible. Problems
that have been studied in this framework include
Job Scheduling [16, 17, 18], Maximal Independent Set
[19, 20, 21] and Minimum Set Cover [21]. In the context
of flows and matchings, [22] consider similar problems

and study the trade-offs between the approximation ratio
and the recourse bound. [16] also consider problems
involving flow computation on bipartite graphs in a
decremental model where edges and nodes disappear
over time.

Our theoretical investigation of minimizing reconfig-
uration changes in network routing is inspired by, and
intended to complement, the investigation of the same
topic in the systems literature. Following the introduc-
tion of systems such as B4 [2] and SWAN [3] that use
a centralized controller in conjunction with a solver to
repeatedly re-optimize the distribution of traffic over
routing paths in a network, a few papers have investi-
gated methods for reducing the rate of “churn” in such
a system. SMORE [7] proposes to do so by restricting
flows to a statically selected set of routing paths chosen
using Räcke’s [23] oblivious routing algorithm, and only
using the solver to re-optimize the distribution of traffic
over this limited set of paths. It is known that in the
worst case, no such “semi-oblivious” routing scheme can
achieve a constant-factor approximation to the optimum
congestion unless it uses exponentially many paths [24].
SOL [6] supports generating new routing paths each
time the solver runs, but it allows the user to specify
constraints that bound (or minimize) the logical distance
between the new configuration and its predecessor, to
ensure that churn remains at a tolerable level. The same
idea of limiting churn by bounding the logical distance
between two consecutive configurations is used by Ni-
agara [5] but at the level of entries in an individual
switch’s rule-table, rather than at the level of paths in a
network.

2 Notation/Preliminaries
In this section we explain some basic assumptions and
notations.

2.1 Online Flow Computation A network is a
directed1 graph G = (V,E) with two special disjoint sets
of vertices S, T ⊆ V called sources and sinks respectively
along with a capacity function c : (V ∪ E) → R+ on
vertices and edges. Vertices in V \(S ∪T) will sometimes
be referred to as internal. The sets V,E will sometimes
be denoted as V (G), E(G). In what follows we’ll only
consider simple networks which contain no parallel edges
or self-loops.

A flow on a network G is a function f : E → R≥0.
Given f , we define fin, fout : V → R≥0 as fin(v) =

1Our model can also handle undirected graphs as follows:
Replace each undirected edge with two directed edges of the same
capacity, one for each direction. Then delete all in-going edges to
sources and all out-going edges from sinks.

∑
u:(u,v)∈E f(u, v) and fout(v) =

∑
u:(v,u)∈E f(v, u).

Abusing notation we’ll denote by f(v) for a vertex v
the net flow imbalance at v, f(v) = fin(v)− fout(v). We
call f a valid flow if:

1. 0 ≤ f(e) ≤ c(e) for every edge e ∈ E.

2. fin(v) ≤ c(v) and fout(v) ≤ c(v) for every vertex
v ∈ V .

3. f(v) = 0 for all v ∈ V \{S, T}

4. −1 ≤ f(v) ≤ 0 for v ∈ S and 0 ≤ f(v) ≤ 1 for
v ∈ T .

The value of a flow f is defined as |f | =
∑
v∈T f(v).

We’ll call a network G flow-admissible if there exists a
valid flow of value |S| i.e. where every source sends one
unit of flow. We’ll denote by Gf the residual graph of
G based on flow f defined the standard way. A vertex
v ∈ S ∪ T is free if f(v) = 0. An augmenting path is a
path in Gf from a free client to a free server.

A simple directed network G = (V,E) for which
c(x) = 1 for every x ∈ V ∪ E will be called unit-
vertex-capacitated. For those networks, we’ll make the
additional assumption that sources have 0 in-degree and
sinks have 0 out-degree. The assumption is without loss
of generality, in the sense that edges into sources and
out of sinks can be deleted from the network without
changing the maximum flow value. That is because every
flow path that passes through a source (respectively, sink)
can be truncated to begin at that source (respectively,
end at that sink) without changing the flow value.

Online Setting We are going to work on an
incremental online setting where sources arrive one at a
time, requesting to send a unit amount of flow through
the network to an arbitrary sink. The part of the graph
containing the vertices V \S and the edges between
them is known in advance. The new information that
becomes available when a source arrives is the set of
edges originating from that source.

More formally, denote by S = {x1, x2, . . . , x|S|} the
set of sources. Then, for any integer τ ∈ [0..|S|] =
{0, 1, . . . , |S|}, let Gτ be the induced subgraph of G on
the vertex set Sτ ∪ (V \S) where Sτ = {xj | 1 ≤ j ≤ τ}
is the set of the sources that have arrived by time τ . At
any point, we have to maintain a valid flow of maximum
value (max flow) in Gτ — assuming G is flow-admissible
— while minimizing the total flow-switching cost, defined
as follows.

Definition 2.1. (Flow-switching cost) Let fτ be
the maximum flow maintained after the first τ < |S|
sources have arrived and fτ+1 the flow maintained on
the next iteration. We define the cost of switching from
flow fτ to flow fτ+1 as:

SCG(fτ , fτ+1) =
∑

e∈E(G)

|fτ (e)− fτ+1(e)|

The total flow-switching cost of an algorithm A
which maintains flows f0, f1, . . . , f|S| is defined as:

FSCG(A) =

|S|−1∑
τ=0

SCG(fτ , fτ+1)

A path in G is represented as a sequence of edges.
In the case of simple graphs (e.g. unit-vertex-capacitated
ones), sequences of vertices uniquely identify a path.
We’ll sometimes assume P is represented as a sequence
of vertices instead and we’ll try to make it clear, based
on the context, which definition of path we adopt at
each point. In either case, the length of a path is defined
as the number of edges in the edge-based representation.

Network-SAP We are interested in analyzing
the performance of the Shortest Augmenting Path
algorithm (denoted as Network-SAP to distinguish
it from Bipartite-SAP to be introduced later). The
algorithm works as follows: when the τ -th source arrives,
choose a shortest augmenting path in the residual graph
Gτfτ−1

from xτ to a free sink (breaking ties arbitrarily)
and update f by pushing 1 unit of flow along that path.

2.2 Online Bipartite Matching In their paper,
Bernstein et al. [8] consider the following setting for
the problem of online bipartite matching : a bipartite
undirected graph G = (L ∪ R,E) where R is a set of
servers (right side) and L is a set of clients (left side)2,
arriving one at a time along with the edges incident to
them. We’ll sometimes denote the number of clients by
nc = |L|. In this context, we’ll call a graph matching-
admissible if a matching of size |L| exists. The goal is
to come up with an algorithm A which maintains at
each point a perfect matching between the set of clients
that have arrived so far and a subset of the servers while
minimizing the total vertex-switching cost (denoted by
VSCG(A)) which is defined as the total number of times a
client gets reassigned (under the matching) to a different
server.

Given a matching, an alternating path is a sequence
of edges alternating between not belonging to the
matching and belonging to it. A vertex is free under a
matching M if it’s not an endpoint of any edges in M .
An augmenting path is an alternating path from a free
client to a free server.

The algorithm considered in [8] is what we’ll call
Bipartite Shortest Augmenting Path (Bipartite-SAP):

2The sets L and R are not necessarily of the same size

when a client l ∈ L arrives, update the matching by
switching the state (membership in the matching) of
every edge along a shortest augmenting path from l
to a free server (ties broken arbitrarily). Notice that
augmenting paths in bipartite graphs are of odd length
and an augmenting path of length 2k + 1 contributes
exactly k to the switching cost. Consequently, the total
vertex-switching cost is at most half the total length
of the augmenting paths used during the run of the
algorithm and thus in what follows we focus on bounding
the length of the augmenting paths used.

The main result in [8] is that the total vertex-
switching cost of the Bipartite-SAP algorithm on a
matching-admissible graph G is at most O(nc log2 nc).
A crucial property of their technique is that reasoning
about the length of the augmenting path chosen when
the τ -th client arrives is independent of the specific
algorithm used to match the clients which arrived before
τ . This allows us to generalize in the following way.

Theorem 2.1. (Generalization of [8, Theorem 1,
Lemma 6]) Let G = (L∪R,E) be a matching-admissible
bipartite graph and let M0 be a matching covering every
vertex of some set L0 ⊆ L. Suppose we run Bipartite-
SAP on G with an initial matching M0 and the vertices
in L\L0 arriving in an online fashion one at a time. The
total vertex-switching cost of the algorithm is at most
O(nc log2 nc) where nc = |L|.

For completeness, we provide the proof of this
theorem — in fact an even further generalization of
it needed in Section 4 — in the Appendix (Theorem
6.1).

3 From Matchings to Flows
We now describe a reduction of the online flow computa-
tion problem on unit-vertex-capacitated networks to the
online bipartite matching problem which will allow us to
transfer the bound on the vertex-switching cost of the
Bipartite-SAP algorithm to the flow-switching cost of
the Network-SAP algorithm. This is achieved by proving
an equivalence between augmenting paths in the two
settings, meaning that Network-SAP and Bipartite-SAP
are essentially the same algorithm on slightly different
graphs.

The reduction is achieved in two steps. First, we
apply a standard gadget reduction which replaces every
internal vertex with a pair of vertices connected with an
edge effectively replacing vertex capacities with edge
capacities. A consequence of this step is that the
resulting graph H has a bipartite structure in which all
sources are on one side and all sinks on the other. The
second step is to notice that paths in H correspond to
alternating paths in the undirected version H of H under

an appropriate initial matching M0, a correspondence
that has also been noted by Lin in the context of
reducing between offline flow and matching problems [14].
Furthermore this correspondence continues to hold at
any time τ (as new sources arrive) between the residual
graph of the modified network and the undirected version
of the modified network under an appropriate matching
Mτ .

Remark 3.1. For the rest of the section, we annotate
some properties of the graph H with labels in the range
(P1)—(P6). The annotations are irrelevant to this
section and can be ignored by the reader on a first reading.
They become relevant in Section 4 when we generalize the
reduction to any graph satisfying properties labeled (P1)—
(P6); we will then use the annotations to cross-reference
arguments presented in this section.

Let G be a flow-admissible unit-vertex-capacitated
network with S, T ⊆ V (G) its sets of sources and sinks
respectively. For the first step of the reduction, we define
H = (V,E) by substituting each vertex u with a “left”
and a “right” counterpart (u, l) and (u, r)3. Edges are
either “internal” (those within the gadget) or “external”,
corresponding to edges already existing in G. If (u, v)
was an edge in G then ((u, l), (v, r)) becomes an edge
of H. The reduction is illustrated in Figure 1 and
formalized as follows:

S′ = (S × {l}), T ′ = (T × {r})(3.1)
V (H) = S′ ∪ T ′ ∪ ((V (G)\(S ∪ T))× {l, r})(3.2)

Ei = {((u, r), (u, l)) : u ∈ V (G)\(S ∪ T)}(3.3)
Eo = {((u, l), (v, r)) : (u, v) ∈ E(G)}(3.4)

E(H) = Ei ∪ Eo(3.5)

c(x) =

{
1, x ∈ S′ ∪ T ′ ∪ E
+∞, otherwise(3.6)

For the second step, we define the undirected
analogue of a graph as follows.

Definition 3.1. Given a directed network H = (V,E),
define H = (V,E) where E = {{u, v} | (u, v) ∈ E}

For the particular H we just defined, notice the
following properties on which the rest of the section
crucially relies.

(H1) There is a bijection between edges of H and edges of
H since H contains no 2-cycles (P4) and no parallel
edges (by assumption that G is simple). Indeed,
suppose there exist vertices (u, l), (v, r) in H that

3l, r in this context are just labels we introduce to make the
construction easier to define.

(a) G (b) H

Figure 1: Here’s an example of the gadget reduction. (1a) G is a directed flow network (edge and vertex capacities
are assumed to be 1). S = {s1, s2}, T = {t1, t2}. An augmenting path in G is shown within the dotted set. (1b) H
is the resulting undirected graph after we applied the gadget reduction and discarded the directions of the edges.
Edges in M0 are shown with double lines. The corresponding augmenting path is shown in a dotted set.

form a 2-cycle. Then ((u, r), (v, l)) must have been
introduced in Ei. But that means u = v and since
the reverse edge is introduced in Eo it must be that
(u, u) ∈ E which contradicts the assumption that G
is simple.

(H2) The residual graph of H under any valid, integral
flow f has a special structure as a consequence of
the unit edge capacities (P3) and the absence of
parallel edges and 2-cycles (P4). Namely, for every
e = (u, v) ∈ E(H), either f(e) = 1 in which case in
place of e there is a backwards edge (v, u) in Hf or
f(e) = 0 in which case e is in Hf . In either case
there is only one edge between u, v in Hf at any
time.

(H3) H is bipartite under the partition V = L∪R where
L = V (H)∩(V (G)×{l}), R = V (H)∩(V (G)×{r})
and S′ ⊆ L, T ′ ⊆ R (P1), (P2). In the context of
bipartite matchings, vertices in L play the role of
clients, vertices in R the role of servers and S′ is
the set of clients arriving online.

As a reminder, we use the notation Hτ and H
τ
to

denote the respective subgraphs at the time when the
first τ sources have arrived. The next step is to define
the initial matching:

(3.7) M0 = {{u, v} |u ∈ L, v ∈ R, (v, u) ∈ E(H0)}

To verify that M0 is indeed a matching, notice that
M0 = Ei (the undirected analogue of the set Ei) which
is a matching by construction.

An example of the transformations described so far
is shown in Figure 1.

Consider running Network-SAP starting on H0 with
an empty flow f0 (i.e. f0(e) = 0 for every e ∈ E(H0)) and
denote by fτ the flow maintained by Network-SAP on

Hτ . At the same time, consider running Bipartite-SAP
starting on H

0
with the initial matching M0. Denote by

Mτ the matching maintained by the algorithm on H
τ

at the end of iteration τ .
Before we proceed any further, let us introduce some

helpful notation.

Definition 3.2. Let φτ , ψτ , χτ , fτ : V × V → {0, 1}
be defined as follows on pairs (u, v) of adjacent vertices
at time τ .

φτ (u, v) = I[{u, v} ∈Mτ]

ψτ (u, v) = I[(u ∈ L) and (v ∈ R)]

χτ (u, v) = I[(u, v) ∈ E(Hτ)]

where I[P] is the indicator function of property P .
For fτ , abusing notation, we define it as the

symmetric extension of the flow function fτ : E(Hτ)→
{0, 1}, i.e. if e = (u, v) ∈ E(Hτ), define fτ (u, v) =
fτ (v, u) = fτ (e).

Definition 3.3. (Invariant (I)) We say that invari-
ant (I) holds between a flow fτ and matching Mτ at time
τ if:

φτ (u, v)⊕ ψτ (u, v)⊕ χτ (u, v)⊕ fτ (u, v) = 0

for all u, v ∈ V such that {u, v} ∈ E(H
τ
).

The significance of the above invariant will become
apparent from the following lemma which establishes an
equivalence between augmenting paths in the network
H and augmenting paths in the bipartite graph H.

Lemma 3.1. At any point τ , if invariant (I) holds
between fτ and Mτ then any sequence of vertices P =
v0, . . . , vk that forms an augmenting path in Hτ

fτ
also

forms an augmenting path in H
τ
under Mτ and vice

versa.

Proof. Observe that a sequence of vertices v0, v1, . . . , vk
with v0 ∈ S′ and vk ∈ T ′ constitutes an augmenting
path in H

τ
if and only if

(i) v0 and vk are free with respect to Mτ ,

(ii) for every consecutive pair (u, v) = (vi, vi+1) in the
sequence, either (u ∈ L, v ∈ R, {u, v} /∈ Mτ) or
(v ∈ L, u ∈ R, {u, v} ∈Mτ).

Similarly, v0, . . . , vk constitutes an augmenting path in
Hτ
fτ

if and only if

(iii) v0 and vk are free with respect to fτ ,

(iv) for every consecutive pair (u, v) = (vi, vi+1) in the
sequence, either (e = (u, v) ∈ E(Hτ) and fτ (e) = 0)
or (e = (v, u) ∈ E(Hτ) and fτ (e) = 1).

Property (ii) is equivalent to φτ (u, v) ⊕ ψτ (u, v) = 1,
while property (iv) is equivalent to χτ (u, v)⊕fτ (u, v) = 1.
Thus, assuming invariant (I), an ordered pair of vertices
satisfies (ii) if and only if it satisfies (iv).

To conclude the proof we must show that a vertex
v is free with respect to fτ if and only if it is free with
respect to Mτ . This, too, follows from invariant (I). We
will present the argument assuming v ∈ T ′, omitting
the symmetric argument that pertains when v ∈ S′. If
v ∈ T ′ is not free in Mτ it means that Mτ contains
an edge {u, v}. Observe that u ∈ L and v ∈ R. This
means φτ (u, v) = ψτ (u, v) = χτ (u, v) = 1. Invariant (I)
then implies fτ (u, v) = 1, from which it follows that v
is not free in fτ . Conversely, if v is not free in fτ then
fτ (v) 6= 0, hence there exists an edge (u, v) ∈ Hτ such
that fτ (u, v) = 1. Observing that u ∈ L and v ∈ R we
have ψτ (u, v) = χτ (u, v) = 1. Invariant (I) then implies
φτ (u, v) = 1, hence v is not free in Mτ .

Now we just need to prove that (I) indeed holds for
every time τ ∈ [0..|S|] and the equivalence we claimed
will follow.

First, let’s notice some useful properties of the
functions defined earlier. φτ and fτ are symmetric on
their arguments: φτ (u, v) = φτ (v, u), fτ (u, v) = fτ (v, u)
and ψτ , χτ are skew-symmetric in the boolean sense:
ψτ (u, v) = 1−ψτ (v, u), χτ (u, v) = 1−χτ (v, u) for every
pair u, v of adjacent vertices at time τ . Hence when
arguing that (I) holds, it suffices to prove it for only one
of the pairs (u, v), (v, u). Furthermore, for every τ0, τ1
such that u, v ∈ V (Hmin(τ0,τ1)) : ψτ0(u, v) = ψτ1(u, v)
and χτ0(u, v) = χτ1(u, v), i.e. the direction of the edges
as well as which endpoints belong to L vs R remains a
constant throughout the run.

We are now ready to prove (I).

Theorem 3.1. Let fτ ,Mτ be the flow and matching
maintained by the two algorithms. Then invariant (I)
holds between them for all τ ∈ [0..|S|].

Proof. We proceed by induction on τ . For τ = 0,
let u, v be arbitrary adjacent vertices in H

0
. Initially

the flow is empty so f0(u, v) = 0. By definition of
M0, {u, v} ∈ M0 (or equivalently φ0(u, v) = 1) if and
only if ψ0(u, v)⊕ χ0(u, v) = 1. Hence (I) holds.

Suppose the invariant holds at time τ < |S|. Now
after the arrival of source xτ+1, a shortest augmenting
path is chosen by the Network-SAP algorithm leading
to a free sink — such a path is guaranteed to exist
by the flow-admissibility assumption. By the inductive
hypothesis and Lemma 3.1, we can assume without loss
of generality that the Bipartite-SAP algorithm chooses
the corresponding augmenting path on H

τ
.

Consider two adjacent vertices u, v ∈ E(H
τ
). If

u, v 6= xτ+1 then those vertices were already present
in Hτ and as noted ψτ+1(u, v) = ψτ (u, v), χτ+1(u, v) =
χτ (u, v). Now either {u, v} was an edge of the aug-
menting path in which case Network-SAP modified
its flow value and Bipartite-SAP modified its pres-
ence in the matching resulting in φτ+1(u, v) = 1 −
φτ (u, v), fτ+1(u, v) = 1− fτ (u, v), or it was not on the
augmenting path in which case the values of φ, f remain
the same. In either case it’s easy to see that (I) holds at
τ + 1.

It remains to show the invariant in the case that
either u or v is the new source. As mentioned before,
it suffices to show it for the case u = xτ+1 as the other
one is symmetric. So in this case {u, v} is a new edge
and ψτ+1(u, v) = 1 because all sources are in L (P1)
and H is bipartite (P2) and χτ+1(u, v) = 1 because
sources only have outgoing edges. If (u, v) was an edge
of the augmenting path then φτ+1(u, v) = fτ+1(u, v) = 1.
Otherwise φτ+1(u, v) = fτ+1(u, v) = 0. So in either case
(I) holds.

To complete the reduction, we need to associate
the flow-switching cost in G with the vertex-switching
cost in H. Lemma 3.1 and Theorem 3.1 guarantee
that the two algorithms follow corresponding paths on
graphs G,H. It’s also easy to see that there is a one-to-
one correspondence between paths in Gτ and Hτ under
which paths of length k become paths of length 2k − 1.
Summing up over all those contributions for every source:

(3.8)

FSCG(Network-SAP) =
1

2
(FSCH(Network-SAP) + |S|)

Now, a path of length k in Hτ contributes 1
2 (k − 1)

to the vertex switching cost in H
τ
. Summing again over

all sources:

(3.9)
FSCH(Network-SAP) = 2VSCH(Bipartite-SAP) + |S|

Combining the above and noticing that |S| ≤ n:

(3.10)
FSCG(Network-SAP) ≤ VSCH(Bipartite-SAP) + n

The final step is to argue that Theorem 2.1 applies
on H which amounts to showing that H is matching-
admissible. The existence of M0 is not enough since it
doesn’t cover all vertices in L. The assumption that
G is flow-admissible allows us to prove the matching-
admissibility of H as follows.

Lemma 3.2. If G is a flow-admissible unit-vertex-
capacitated network then H is matching-admissible.

Proof. Suppose f is a max flow in G which accommo-
dates all sources. Due to the vertex capacity constrains,
this flow must be decomposable into vertex-disjoint paths
Q = {Q1, . . . , Q|S|} in G. Let {P1, . . . , P|S|} denote the
corresponding set of paths in H, obtained by inflating
each vertex u in the interior of one of the paths into the
pair of “gadget vertices” (u, r), (u, l). We claim that the
symmetric difference M =

(⋃|S|
τ=1 Pτ

)
⊕M0 is a match-

ing which covers all vertices in L: M0 is a matching and(⋃|S|
τ=1 Pτ

)
is a set of vertex-disjoint M0-augmenting

paths, one for each source in S.

Theorem 2.1 thus implies a bound of O(|L| log2 |L|)
to VSCH(Bipartite-SAP) and |L| ≤ |V (G)| = n.
Combining with equation 3.10 we get the following
theorem.

Theorem 3.2. For any flow-admissible unit-vertex-
capacitated network G = (V,E), the flow-switching cost
of the Network-SAP algorithm on G when sources ar-
rive in an online manner is at most O(n log2 n) where
n = |V |.

4 More general networks
The reduction described in the previous section can
in fact be generalized. The unit vertex capacities
were easy to handle since the gadget of the first step
transformed the network in a way that not only obviated
the vertex capacity constraints, but also provided the
network with the special bipartite structure that enabled
us to argue that a certain equivalence holds between
augmenting paths in the directed and undirected case.
In this section we identify the properties that a directed

graph needs to possess in order for the reduction to go
through. These properties turn out to define a more
general family of directed graphs than the ones produced
by the construction (3.1)-(3.6) specified in the preceding
section.

Let H = (V,E) be a directed network with a set
S ⊆ V of sources and a set T ⊆ V of sinks. Let L,R be
a partition of its vertices. We claim that the essential
properties that H must have in order for the reduction
to go through are the following.

(P1) S ⊆ L, T ⊆ R.

(P2) [Bipartite] E ⊆ (L×R) ∪ (R× L)

(P3) [Unit capacities] ∀x ∈ (E ∪S ∪ T) : c(x) = 1 and
c(x) = +∞ otherwise.

(P4) [Oriented graph] The graph is simple (no loops or
parallel edges) and contains no 2-cycles (for every
u, v ∈ V either (u, v) /∈ E or (v, u) /∈ E).

(P5) [Contains a matching] The undirected analogue
H (see Definition 3.1) of H contains a matching
that covers all vertices in L.

(P6) The set {{u, v} | u ∈ R, v ∈ L, (u, v) ∈ E(H)} is a
matching in H.

Before proving it, notice that the graph H defined
in the preceding section by (3.1)-(3.6) indeed satisfies
all these properties. (P1)—(P4) hold by construction as
noted in the previous section when defining H. Property
(P5) is what Lemma 3.2 asserts and (P6) holds by
definition of H.

In fact, we can generalize (P6) to the following:

(P6′) [Bounded in-degree] ∀l ∈ L : |E∩ (R×{l})| ≤ 1,
i.e. vertices in L have in-degree at most 1.

For a network satisfying (P6′), the setM0 as defined
in 3.7 is now a semi-matching, i.e. vertices in R are
allowed to be matched to multiple vertices in L but each
vertex in L is matched to at most one vertex in R (see
Definition 6.1). As we shall see shortly, Theorem 3.1 still
holds when Mτ is a semi-matching and furthermore, as
we prove in the Appendix, the bound of [8] extends to
when the graph is initialized with a semi-matching.

Theorem 4.1. For any flow-admissible network H =
(V,E) for which there exists a partition V = L ∪ R of
its vertices that satisfies (P1)—(P5) and (P6′), the flow-
switching cost of the Network-SAP algorithm on H when
sources arrive in an online manner is at most O(n log2 n)
where n = |V |.

Proof. The proof is presented in Section 3. That proof
relied on three properties of H that were denoted (H1)—
(H3); the justifications for those properties presented in
Section 3 are annotated with labels indicating how the
justifications can be derived from properties (P1)—(P4).
The proofs of Lemma 3.1 and Theorem 3.1 rely only on
(H1)—(H3) and on the fact that Mτ is a matching. As
discussed, (H1)—(H3) follow from (P1)—(P4), and M0

is a semi-matching due to (P6′). The fact that Mτ is a
semi-matching for τ > 0 is proven in Lemma 6.1. Thus,
the proofs of Lemma 3.1 and Theorem 3.1 remain valid if
we replace “matching” with “semi-matching” throughout.
Property (P5) replaces Lemma 3.2: H is matching-
admissible according to the original definition of that
term (not modified to incorporate semi-matchings), and
the property of matching-admissibility is needed for the
application of Theorem 6.1 to come.

Equation (3.9) still holds and expresses the flow-
switching cost in H in terms of the vertex-switching cost
in H:

FSCG(Network-SAP) ≤ 2VSCG(Bipartite-SAP) + n

Theorem 6.1 now applies on H because of (P5) and
(P6′) hence FSCH(Network-SAP) = O(|L| log2 |L|) =
O(n log2 n).

5 Discussion and open problems
We showed an O(n log2 n) bound on the switching cost of
the Network-SAP algorithm in networks with unit edge
and vertex capacities. Throughout the paper we assumed
admissibility of the underlying network (i.e. it has the
capacity to simultaneously accommodate the requests
of all the sources). As [8, Observation 25] observe in
the bipartite matching case, this assumption can be
removed by effectively ignoring sources whose insertion
doesn’t increase the value of the flow: by the nature of
augmenting paths, sources that never contributed to the
flow have no incoming edges in the residual graph and
cannot be part of any future augmenting path, hence
they can be safely ignored.

The reduction of our model to the online bipartite
matching problem depended crucially on the ability to
generalize the results of the latter to a setting where the
graph can be initialized with an arbitrary semi-matching.
Our reduction is thus quite general in the sense that
it can transfer switching cost bounds from one model
to the other as long as these bounds hold under the
aforementioned generalization to semi-matchings. We
believe that the O(n log n) bound of [11] on the switching
cost of the Bipartite-SAP algorithm on trees might be
a setting generalizable to semi-matching in which case
such a generalization would entail a similar bound on

the flow-switching cost of networks whose undirected
counterpart is a tree.

Closing the gap between our O(n log2 n) upper
bound and the Ω(n log n) lower bound of the Network-
SAP in the unit-vertex-capacitated case remains open —
as is the case for the online bipartite matching problem.

In our view, the most appealing and consequential
future direction is to design algorithms and prove non-
trivial switching cost bounds for broader families of
dynamic routing problems. For example, one could aim
to prove non-trivial bounds on the switching cost of the
Network-SAP (or other algorithms) when applied to:

1. networks with heterogeneous capacities on edges
and/or vertices;

2. sources that may depart from the network some
time after their arrival (rather than the arrival-only
model assumed in this work), e.g. modeling live
streams of finite duration;

3. multi-commodity versions of the problem where
clients target their requests to specific servers, as
in the traffic engineering application presented in
Section 1;

4. combinations of the foregoing assumptions.

One can also consider algorithms that make both
routing and admission control decisions. In other
words, the algorithm may have the option not to
accommodate the demands of every source, even if they
can be accommodated. This line of investigation would
aim to quantify the trade-off between the number of
requests denied and the switching cost incurred while
accommodating the requests served.

6 Appendix
Here we present and slightly generalize the results of
[8]. The framework and relevant notation is explained in
Section 2.2. We begin by generalizing the definition of a
matching to that of semi-matching which allows vertices
on the server-side of the bipartite graph to be matched
to more than one client.

Definition 6.1. (semi-matching) A subset M ⊆ E
of the edges of G = (L ∪ R,E) is a semi-matching if
every vertex l ∈ L has exactly one incident edge in M .

It’s important to note that semi-matchings are only
used when initializing an assignment of clients to servers
and we’re not altering the definitions of free servers and
augmenting paths nor the behavior of the Bipartite-SAP
algorithm. When a fresh client arrives and requests
to be matched, the algorithm will still try to find an

alternating path from that client to a free server and
augment down that path updating the semi-matching.
The following lemma guarantees that the algorithm
remains well-defined. As a reminder, Bipartite-SAP is
applied on a graph where a set L0 of clients are present
at time τ = 0 and clients in D = L\L0 arrive one at a
time.

Lemma 6.1. If M0 is an initial semi-matching then the
set Mτ maintained at the end of the τ -th iteration of the
Bipartite-SAP algorithm remains a semi-matching for
any τ ∈ [|D|].

Proof. We proceed by induction on τ . Our assumption
on M0 covers the base case. Suppose Mτ−1 is a semi-
matching. Let u be a client on the augmenting path Pτ
used to update Mτ−1 to Mτ .

If u is the vertex xτ that just arrived then no edge
in Mτ−1 is incident to it and exactly one edge incident
to u enters Mτ .

If u is any other client then there are exactly two
edges of Pτ incident on u, one belonging in Mτ−1 and
the other not. The former is in fact the only edge of
Mτ−1 incident to u because of the inductive hypothesis.
Augmenting down Pτ means switching the state of those
two edges so in Mτ there will still be exactly one edge
incident to u.

In what follows we’ll denote by N(v) the neighbor-
hood of a vertex v and for a subset A ⊆ L ∪ R of the
vertices, denote N(A) =

⋃
v∈AN(v). To prove their re-

sult, [8] introduce the notion of balanced flow. To avoid
confusion with the notion of flow on a directed network
we’ll use the term balanced function instead to refer to
the same concept.

Definition 6.2. (Balanced Function) A function
α : R → R≥0 is called balanced if there exist non-
negative (we)e∈E such that:∑

r∈N(l) wlr = 1 ∀l ∈ L∑
l∈N(r) wlr = α(r) ∀r ∈ R

wlr = 0 ∀l ∈ L, r ∈ N(l)\Act(l),
Act(l) = argminr∈N(l)α(r)

The set Act(l) is called the active neighborhood of
a client l. An edge {l, r} where r ∈ Act(l) is an active
edge.

Essentially we can think of each element of l ∈ L
as having one unit of some quantity it must entirely
distribute to its neighbors in a “balanced” way in the
sense that it cannot redistribute its quantity in a way that
strictly reduces the maximum load among its neighbors.

The following lemma — the proof of which we omit
and can be found in [8] — guarantees that, under a
reasonable condition, a balanced function exists and is
uniquely defined:

Lemma 6.2. ([8, Lemma 14]) A unique balanced func-
tion exists for a graph G = (L ∪ R,E) if and only if
|N(l)| ≥ 1 for all l ∈ L.

In what follows we’ll be working with graphs where
each client has at least one neighbor (a consequence of
the matching-admissibility assumption) and we’ll denote
by α(·) the unique balanced function associated with
that graph. Balanced functions exhibit the following
useful properties which we provide without proof:

Lemma 6.3. ([8, Lemma 21 and 22]) Denote by
ατ (·) the balanced function of the graph after the τ -th
dynamic client has arrived for τ ∈ [0..|D|].4 The change
∆τα(r) = ατ (r) − ατ−1(r) of each server r ∈ R obeys
the following properties for all τ :

(a) ∆τα(r) ≥ 0 for all r ∈ R.

(b) ∆τα(r) = 0 for all r ∈ R such that ατ−1(r) <
µ(xτ) = minv∈N(xτ) ατ−1(v)

Lemma 6.4. ([8, Lemma 23]) The bipartite graph G =
(L ∪R,E) contains a matching of size |L| if and only if
α(r) ≤ 1 for all r ∈ R.

In order to bound the length of augmenting paths
originating from a client, it is convenient to bound the
length of alternating paths originating from servers in
the neighborhood of that client and thus the following
definition introduced in [8] is useful: an augmenting
tail is an alternating path from a server to a free server.
Notice that every augmenting path has a unique maximal
augmenting tail. Similarly, an active augmenting tail
(under some semi-matching) is an augmenting tail for
which the edges not belonging to the semi-matching are
active.

We now proceed to prove a generalization of an
essential lemma in [8]. This lemma allows us to assert
the existence of an augmenting tail of bounded length
from each server r based on how far α(r) is from 1. Later,
using the fact that each client contributes 1 to the sum
of the balanced function values and Lemma 6.4 we’ll be
able to bound the total length of the augmenting paths
used by the Bipartite-SAP.

Lemma 6.5. (Generalization of [8, Expansion
Lemma]) Let M be an semi-matching of a matching-
admissible bipartite graph G = (L ∪ R,E) and r ∈ R

4For τ = 0, α0(·) is the balanced function of the graph where
the only clients present are the ones in L0.

with α(r) ≤ 1− ε for some ε > 0. Then there exists an
active augmenting tail from r to a free server of length
at most 2

ε ln(|L|).

Proof. Notice that any server r′ reachable from r by an
active augmenting tail will have α(r′) ≤ α(r) ≤ 1− ε by
the definition of active edges.

Let Ki for i ≥ 1 be the set of all clients reachable
from r by an active augmenting tail of length at most
2i − 1, thus K1 ⊆ K2 ⊆ . . . ⊆ Ki, and let ki = |Ki|.
Denote

⋃
l∈Ki Act(l) by Act(Ki).

We have:

ki = |Ki| ≤
∑

r′∈Act(Ki)

α(r′)

≤
∑

r′∈Act(Ki)

(1− ε)

= |Act(Ki)|(1− ε)

Now suppose there is no active augmenting tail of
length ≤ 2i. This means that all servers in Act(Ki) are
matched under M and furthermore, since M is a semi-
matching, the function that maps each element of Ki+1

that belongs to an edge of M to the opposite endpoint
of that edge is a surjection from a subset of Ki+1 to
Act(Ki), so ki+1 ≥ |Act(Ki)|.

Thus, ki+1 ≥ ki
1−ε i.e. the set of clients reachable

by an active augmenting tail of length 2i − 1 expands
by a factor of at least 1

1−ε at each increment of i.

Consequently, |L| ≥ ki+1 ≥
(

1
1−ε

)i
k1 ≥

(
1

1−ε

)i
, and

thus i ≤ ln |L|
ln 1

1−ε
. Using the inequality 1− ε < e−ε we get

i < 1
ε ln |L|.
We have shown that the hypothesis that no active

augmenting tail has length ≤ 2i implies that i < 1
ε ln |L|.

Hence, there must exist a free server reachable by an
active augmenting tail of length at most 2

ε ln |L|.

We are now ready to state and prove the main
theorem which closely follows the proof techniques in
[8].

Theorem 6.1. (Generalization of [8, Theorem
1, Lemma 6]) Let G = (L ∪ R,E) be a matching-
admissible bipartite graph and let M0 be a semi-matching
covering every vertex of some set L0 ⊆ L. Suppose we
run Bipartite-SAP on G with an initial semi-matching
M0 and the vertices in D = L\L0 arriving in an online
fashion one at a time. The total vertex-switching cost of
the algorithm is at most O(nc log2 nc) where nc = |L|.

Proof. Recall that VSCG(Bipartite-SAP) ≤
1
2

∑|D|
τ=1 |Pτ | where |Pτ | is the length of the τ -th

augmenting path. Denoting by m(h) the number of
augmenting paths among the Pτ whose length is at least
h, the sum can alternatively be computed as

∑2nc
τ=1m(h)

— an augmenting path cannot have more than 2nc edges.
We’re going to bound m(h+ 2) from above by 4nc lnnc

h
from which then the result follows:

VSCG(Bipartite-SAP) ≤ 1

2

2nc∑
h=1

m(h)

=
1

2

(
m(1) +m(2) +

2nc−2∑
h=1

m(h+ 2)

)

≤ 1

2

(
|D|+ |D|+ 4nc lnnc

2nc∑
h=1

1

h

)
= O(nc log2 nc)

For what follows fix an h and assume h > 4 lnnc;
otherwise the bound m(h+ 2) ≤ nc is trivial.

Let xτ be a client whose insertion resulted in an
SAP of length |Pτ | ≥ h + 2 and denote by ατ−1
the balanced function before xτ arrives. It follows
that every server r ∈ N(xτ) must have ατ−1(r) >
1 − 2 lnnc

h and thus µ(xτ) > 1 − 2 lnnc
h . (Recall

µ(xτ) = minv∈N(xτ) ατ−1(v).) For supposing ατ−1(v) ≤
1− 2 lnnc

h for some v ∈ N(xτ), by Lemma 6.5 there must
exist an active augmenting tail of length at most h and
so an augmenting path from xτ of length at most h+ 1
which is a contradiction.

Consider the sequence of sets Sτ = {r ∈ R | ατ (r) >
1 − 2 lnnc

h } of clients for τ ∈ [0..|D|]. By part (a) of
Lemma 6.3, those sets are nested: S0 ⊆ S1 ⊆ . . . ⊆ S|D|.
Define τ0(r) = min{τ ∈ [0..|D|] | r ∈ Sτ}. Now we can
bound m(h+ 2) as follows:

m(h+ 2) =
∑

τ :|Pτ |≥h+2

1(6.11)

=
∑

τ :|Pτ |≥h+2

∑
r∈R

∆τα(r)(6.12)

=
∑

τ :|Pτ |≥h+2

∑
r∈Sτ−1

∆τα(r)(6.13)

≤
∑

1≤τ≤|D|

∑
r∈Sτ−1

∆τα(r)(6.14)

=
∑

r∈S|D|−1

∑
τ0(r)<τ≤|D|

∆τα(r)(6.15)

=
∑

r∈S|D|−1

(
α|D|(r)− ατ0(r)(r)

)
(6.16)

<
∑

r∈S|D|−1

(
1−

(
1− 2 lnnc

h

))
(6.17)

≤ |S|D|| ·
2 lnnc
h

(6.18)

Equation (6.12) holds because every new client
contributes a total of 1 unit to the sum of the balanced
functions. Equation (6.13) follows from part (b) of
Lemma 6.3. Equation (6.15) is reversing the order of
summation. Equation (6.16) is expanding the telescoping
sum and equation (6.17) follows from the observation
that α|D|(r) ≤ 1 for all servers r and ατ0(r)(r) >

1 − 2 lnnc
h as observed in a previous paragraph. The

rest of the equations and inequalities follow easily using
part (a) of Lemma 6.3 that all ∆τα(r) ≥ 0.

The final step of the proof is to bound |S|L\L0||.
Notice that there are nc total clients which can contribute
to the values α|D|(r) so nc ≥ |S|D|| ·

(
1− 2 lnnc

h

)
≥ |S|D||2

where the second inequality follows from the assumption
that h > 4 lnnc.

Hence we can conclude that m(h+ 2) ≤ 4nc lnnc
h .

References

[1] Leonidas Kontothanassis, Ramesh Sitaraman, Joel
Wein, Duke Hong, Robert Kleinberg, Brian Mancuso,
David Shaw, and Daniel Stodolsky. A transport
layer for live streaming in a content delivery network.
Proceedings of the IEEE, 92(9):1408–1419, 2004. Special
issue on evolution of Internet technologies.

[2] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon
Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,
Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4:
Experience with a Globally Deployed Software Defined
WAN. In Proceedings of ACM SIGCOMM 2013, 2013.

[3] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan,
Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger
Wattenhofer. Achieving High Utilization with Software-
Driven WAN. In Proceedings of ACM SIGCOMM 2013,
2013.

[4] Xin Jin, Hongqiang Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Jennifer Rexford, Roger
Wattenhofer, and Ming Zhang. Dionysus: Dynamic
Scheduling of Network Updates. In Proceedings of ACM
SIGCOMM 2014, 2014.

[5] Nanxi Kang, Monia Ghobadi, John Reumann, Alexan-
der Shraer, and Jennifer Rexford. Efficient traffic split-
ting on commodity switches. In Proceedings of the 11th
ACM Conference on Emerging Networking Experiments
and Technologies, CoNEXT ’15, pages 6:1–6:13, New
York, NY, USA, 2015. ACM.

[6] Victor Heorhiadi, Michael K. Reiter, and Vyas Sekar.
Simplifying software-defined network optimization using
SOL. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa
Clara, CA, USA, March 16-18, 2016, pages 223–237,
2016.

[7] Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster,
Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim,
and Robert Soulé. Semi-oblivious traffic engineering:
The road not taken. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[8] Aaron Bernstein, Jacob Holm, and Eva Rotenberg.
Online bipartite matching with amortized o(log2 n)
replacements. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 947–959, Philadelphia, PA, USA, 2018.
Society for Industrial and Applied Mathematics.

[9] B. Bosek, D. Leniowski, P. Sankowski, and A. Zych.
Online bipartite matching in offline time. In 2014 IEEE
55th Annual Symposium on Foundations of Computer
Science, pages 384–393, Oct 2014.

[10] Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski,
and Anna Zych-Pawlewicz. Shortest augmenting paths
for online matchings on trees. Theory of Computing
Systems, 62(2):337–348, Feb 2018.

[11] Bartłomiej Bosek, Dariusz Leniowski, Piotr Sankowski,
and Anna Zych-Pawlewicz. A tight bound for shortest
augmenting paths on trees. In Michael A. Bender,
Martín Farach-Colton, and Miguel A. Mosteiro, editors,
LATIN 2018: Theoretical Informatics, pages 201–216,
Cham, 2018. Springer International Publishing.

[12] K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and
H. Lin. Online bipartite perfect matching with augmen-
tations. In IEEE INFOCOM 2009, pages 1044–1052,
April 2009.

[13] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and
Jeffrey Scott Vitter. Online perfect matching and
mobile computing. In Selim G. Akl, Frank Dehne, Jörg-
Rüdiger Sack, and Nicola Santoro, editors, Algorithms
and Data Structures, pages 194–205, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[14] Henry Lin. Reducing directed max flow to undirected
max flow, 2009. unpublished manuscript.

[15] Aleksander Madry. Navigating central path with
electrical flows: From flows to matchings, and back.
In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 253–262. IEEE, 2013.

[16] Steven Phillips and Jeffery Westbrook. Online load
balancing and network flow. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’93, pages 402–411, New York, NY,
USA, 1993. ACM.

[17] Peter Sanders, Naveen Sivadasan, and Martin Skutella.
Online scheduling with bounded migration. Math. Oper.
Res., 34(2):481–498, May 2009.

[18] Jeffery Westbrook. Load balancing for response time.
J. Algorithms, 35(1):1–16, April 2000.

[19] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and
Shay Solomon. Fully dynamic maximal independent
set with sublinear update time. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, pages 815–826, New York, NY,
USA, 2018. ACM.

[20] Keren Censor-Hillel, Elad Haramaty, and Zohar Karnin.
Optimal dynamic distributed mis. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed
Computing, PODC ’16, pages 217–226, New York, NY,
USA, 2016. ACM.

[21] Anupam Gupta, Ravishankar Krishnaswamy, Amit Ku-
mar, and Debmalya Panigrahi. Online and dynamic
algorithms for set cover. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, pages 537–550, New York, NY,
USA, 2017. ACM.

[22] Anupam Gupta, Amit Kumar, and Cliff Stein. Main-
taining assignments online: Matching, scheduling, and
flows. In Proceedings of the Twenty-fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’14,
pages 468–479, Philadelphia, PA, USA, 2014. Society
for Industrial and Applied Mathematics.

[23] Harald Räcke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proceedings
of the Fortieth Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 255–264, New York, NY,
USA, 2008. ACM.

[24] MohammadTaghi Hajiaghayi, Robert Kleinberg, and
Tom Leighton. Semi-oblivious routing: Lower bounds.
In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’07, pages
929–938, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

	Introduction
	Our results and techniques
	Related work

	Notation/Preliminaries
	Online Flow Computation
	Online Bipartite Matching

	From Matchings to Flows
	More general networks
	Discussion and open problems
	Appendix

